Saturday, October 27, 2012

Meet our wildlife liaison


Meet our wildlife liaison
 Posted on Oct 26, 2012 09:26:34 AM | George Hale
 0 Comments |  | Poor Fair Average Good Excellent
By George Hale, IceBridge Science Outreach Coordinator, NASA Goddard Space Flight Center
The newest addition to the IceBridge team is our stuffed penguin mascot. He was recently selected as IceBridge's wildlife liaison, and after training at NASA's Goddard Spaceflight Center in Greenbelt, Maryland, he traveled with IceBridge scientists on the DC-8 to Punta Arenas, Chile. Our stuffed penguin mascot has been very popular with students we have done online chats with during our flights, so we've put together an introduction.  
The IceBridge mascot aboard the NASA DC-8
The IceBridge mascot aboard the NASA DC-8. Credit: NASA/Michael Studinger
What is your role with Operation IceBridge?
I'm the IceBridge wildlife liaison and mascot. Animals that live in Earth's polar regions, especially penguins, find it annoying when planes fly over too low. Because of this, IceBridge works hard to avoid areas where penguins live. We work with the National Science Foundation and a group in the United Kingdom called Environmental Research Assessment to carefully plan our flights, and I'm able to give a penguin's point of view on things. I'm also in charge of keeping people happy during the 10 to 12-hour-long flights over the Antarctic so they do their best work.
How long have you been with NASA and IceBridge?
I started working for NASA only a few weeks before the start of our Antarctic campaign. After being hired I started my training at Goddard, and rode to work with IceBridge's project manager Christy Hansen. After a few weeks of hard studying I was ready to start flying, which is something penguins almost never get to do.
Where are you from originally?
My family originally comes from South America, not far from Punta Arenas, Chile, where IceBridge flies out of. I live in Ellicot City, Maryland, now, but I hope I can get a chance to see some of my cousins while I'm in Chile. There are some penguins living just a short drive from Punta Arenas.
What led you to join Operation IceBridge?
Three reasons really. First, I want to know more about what's happening to ice in the Arctic and Antarctic. Changes to the climate in the Antarctic affect how my fellow penguins live: where they eat, where they raise their children and where they migrate every year. By working with IceBridge I can learn more about how things are changing. Second, I think it's important to avoid disturbing wildlife when doing scientific research and this is something I feel I can help out with. And lastly, because even though penguins are birds, we can't fly. I couldn't pass up a chance to fly on NASA aircraft.
The IceBridge penguin mascot using the DC-8's satellite phone headset.
The IceBridge penguin mascot using the DC-8's satellite phone headset. Credit: NASA / George Hale
What's it like flying over the Antarctic?
It's something I've dreamed about since the day I hatched. Being able to see so much of the ice from above is really cool. I've seen big glaciers, giant sheets of ice that stretch off as far as you can see and tall mountains. Seeing these things from the air when I'm used to seeing everything from on the ground and under water is amazing.
Have you seen any other penguins on the mission?
Some of the people with IceBridge went to see penguins the other day, but I was busy with work, but my new friends took lots of pictures for me. I think I'll get to go with them soon though. I won't see any from the plane though as long as I do my job right.
Editor's note: Our mascot still needs a name. Please Tweet your suggestions to our Twitter feed @NASA_ICE by Nov. 2.

To the Ends of the Earth
 Posted on Oct 13, 2012 09:33:50 AM | George Hale
 0 Comments |  | Poor Fair Average Good Excellent
By Christy Hansen, IceBridge Project Manager, NASA Goddard Space Flight Center
If somebody had told me that 2012 would bring with it a deployment to Greenland, Chile, and possibly Antarctica, I never would have believed them. But here I am reflecting back on my three weeks in Kangerlussuaq, Greenland, as I pack for Punta Arenas, Chile. These experiences have been made possible by my new assignment as the project manager of a NASA airborne geophysical project called Operation IceBridge (OIB).
Christy Hansen in Kanger, Greenland, after one of Operation IceBridge’s science flights. Behind her is the air traffic control tower, as well as the P-3B propellers.
Christy Hansen in Kanger, Greenland, after one of Operation IceBridge’s science flights. Behind her is the air traffic control tower, as well as the P-3B propellers. Credit: Christy Hansen

I started full-time work with OIB this past March. What I truly enjoy about this project is the remarkably talented and extensive team I work with. As the project manager, I must coordinate and help lead a vast team of experts spread out across the country. This team includes polar scientists, instrument engineers, educational/outreach teams, logistics teams, data centers, and aircraft offices. I have to utilize good leadership and communications skills to help my integrated team work together smoothly to achieve a common goal and meet all of our science objectives.
Christy Hansen stands in front of an airplane at Wallops Flight Facility in Virginia. This plane took her to Greenland this past April.
Christy Hansen stands in front of an airplane at Wallops Flight Facility in Virginia. This plane took her to Greenland this past April. Credit: Matt Linkswiler
Twice a year, the OIB team travels to Earth’s polar regions to collect data on the changing ice sheets, glaciers, and sea ice. For the Arctic campaign, we use the P-3B 4-engine turbo-prop airplane at NASA Goddard Space Flight Center's Wallops Flight Facility. It has been modified to carry nine different science instruments, including laser altimeters, which measure the different heights of the terrain from aircraft, and various types of radar systems that can actually penetrate the thick ice sheets.
Just four weeks after I started as project manager, I found myself landing in a small Southwestern Greenlandic town called Kangerlussuaq. There was snow on the runway and everyone was bundled in coats. The majority of the buildings looked like military barracks. Most of the OIB team was already there, and they greeted me at the plane. At the time, I knew only one person, the project scientist, and we had only spoken a few times! What an adventure awaited me!
A view of sea ice with open leads of water.
A view of sea ice with open leads of water. Credit: Christy Hansen
An image of a glacier’s calving front, where it flows and loses ice to the sea.
An image of a glacier’s calving front, where it flows and loses ice to the sea. Credit: Christy Hansen

Each day, we flew at 1500 feet, seemingly scraping the surface of the massive Greenland ice sheet. I felt as though I could have touched it with my fingers if I had just stretched out my hand. It was beautiful.
Watching the team work together like a well-oiled machine, for almost 8 hours at a time, was simply awesome. The pilots, the aircraft maintenance team, and the instrument experts, who collect gigabytes and terabytes of data per flight, collect the invaluable data that tells us what is happening at our poles, and how much the ice is changing each year.
The plane flies over sea ice. The P-3B propeller can be seen out the window of the plane.
The plane flies over sea ice. The P-3B propeller can be seen out the window of the plane. Credit: Christy Hansen
Christy Hansen sits on a toolbox while she working on the Operation IceBridge flight. She is surrounded by various scientific instruments.
Christy Hansen sits on a toolbox while she working on the Operation IceBridge flight. She is surrounded by various scientific instruments. Credit: Christy Hansen
My second trip to collect data with the OIB team began last September. For the Antarctic campaign, we use NASA Dryden Flight Research Center’s DC-8 aircraft and operate out of Punta Arenas, Chile. During this Chilean campaign, we will actually fly from Chile, over specific science target regions in Antarctica, and then land back in Chile! That’s an 11-hour round trip flight almost every day!
Christy Hansen hugs the Russell glacier, part of the Greenland Ice Sheet.
Christy Hansen hugs the Russell glacier, part of the Greenland Ice Sheet. Credit: Christy Hansen
Isn’t this exciting? If you want to learn more about what I do and Operation IceBridge’s current Antarctic campaign, join my Google+ Hangout on Wednesday, October 17th from 1-2pm EST. I look forward to talking to you from Chile.
Editors note: This feature was originally posted on NASA's Earth Science Week Blog


Operation IceBridge Arrives in Chile
 Posted on Oct 09, 2012 12:39:18 PM | George Hale
 0 Comments |  | Poor Fair Average Good Excellent
By Michael Studinger, IceBridge Project Scientist, NASA Goddard Space Flight Center
SANTIAGO, CHILE - Last night the DC-8 took off for a 10.7 hour long transit flight from NASA’s Dryden Aircraft Operation Facility in Palmdale, Calif.,  to Santiago, Chile. We took off shortly before midnight to arrive in Santiago at midday. Flying through the dark of night meant the cabin of the DC-8 was mainly illuminated by the many computer screens, creating an unusual view for the instrument teams who are used to flying science missions during daylight.
DC-8 on ramp at Dryden
The DC-8 is being prepared at night on the ramp in Palmdale for the transit flight to Punta Arenas, Chile. Credit: NASA/Michael Studinger
DC-8 cabin in the dark
The DC-8 cabin during the night flight from Palmdale to Santiago. Credit: NASA/Michael Studinger
The 10.7 hour long transit flight puts things into perspective. The distance from Palmdale, in the Mojave Desert, to Santiago is 5,761 miles (9,271 km). This is 2.3 times the distance between Los Angeles and New York City. Tomorrow morning we will continue our flight to Punta Arenas at the southern tip of Chile, which will be our base of operations for the coming weeks for sciences flights over Antarctica. In total we will have traveled 7,292 miles (11,735 km) from Palmdale. The map below shows that we have traveled a long way around the globe. Our flight takes us over the Pacific Ocean along the coast of Mexico heading towards Galápagos Islands and continuing along the coast of South America and into Santiago, Chile.
Transit route of the DC-8
Transit route of the DC-8 from Palmdale to Santiago and Punta Arenas in southern Chile. Credit: NASA/Michael Studinger
The transit flight also reminds me about the large distance that we cover during each of our Antarctic science flights. A typical science flight is 11 hours long and we routinely travel a distance that is longer that the trip from Los Angeles to New York and back. The long legs of the DC-8 allow us to reach scientific targets in Antarctica that have been, and still are, a challenge to survey. I have to remind myself on every flight that we are collecting data that would be very challenging to get if we did not have the DC-8
Tomorrow morning we will continue our flight from Santiago to Punta Arenas, to set up there, installing base stations and data processing computers, and will then start flying science missions over Antarctica to collect data. Coming back year after year it is interesting to see the changes in the sea ice and glaciers and ice sheets over time.

IceBridge Over the Desert
 Posted on Oct 04, 2012 08:12:45 AM | George Hale
 0 Comments |  | Poor Fair Average Good Excellent
By Claire Saravia, NASA Goddard Space Flight Center Office of Communications

Before the instruments aboard NASA’s Operation IceBridge fly over Antarctica in October to collect polar ice data, they will be tested over an unlikely ice substitute: a series of sites in the Mojave Desert.
The instruments that are part of IceBridge—a six-year flight mission designed to study ice at the Earth’s poles and bridge the gap between the two ICESat missions —are put through test flights every year to ensure they’re functioning properly.
This year, instruments like the Airborne Topographic Mapper (ATM) will use three separate sites in the California desert as a dress rehearsal for one of the real mission flights.
View of the Mojave Desert from the DC-8
View of the Mojave Desert from the DC-8. Credit: NASA/J. Yungel
While it might seem counterintuitive to use a desert to simulate land filled with ice, ATM scientist John Sonntag said the area’s land features and reflective sand produce a similar landscape.
“The variety of terrain and surface reflectance over these lines will allow us to adjust the ATM for a wide variety of targets, thus increasing the reliability of the system once we get over Antarctica,” Sonntag said.
The IceBridge mission scientists aren’t the first to use the dry, sandy area to portray its icy counterpart. Sonntag said the test flight would be using some of the same tracks used during test flights of the ICESat mission as a way to compare measurements.
“We continue to overfly these tracks as part of ATM calibrations because we can compare the results with over flights of those same targets in previous years,” Sonntag said. “These comparisons will allow us to adjust the calibration parameters of the ATM with great precision.”
One of the desert features that will be used in the test flight is the El Mirage dry lake, which Sonntag said is frequently featured as a scenic backdrop in both movies and car commercials.
“El Mirage is a nearly ideal site for doing these laser calibrations because it is large, relatively flat, completely unobstructed by overhead features such as power lines and light poles, and has a bright laser reflectance similar to snow and ice,” Sonntag said.
The El Mirage dry lake in the Mojave Desert
The El Mirage dry lake in the Mojave Desert. Credit: NASA/J. Yungel
While it would be more ideal to use actual snowy surfaces to test the instruments, ATM program manager James Yungel said the easy access to sand regions outside both the NASA Wallops Flight Facility and the Dryden Flight Research Center made it the next best thing.
“Finding snow near Wallops or Dryden when we install on the aircraft can be difficult, but both NASA home airports have sand beaches or sand desert regions that are fairly close to snow reflectivity,” Yungel said. “These sandy sites allow us to tune the ATM systems for actual snow targets.”
IceBridge project scientist Michael Studinger said the fact that the scientists know the desert sites well makes them a popular spot for adjusting the instruments to measure ice.
“This is necessary so that we can collect high quality data over unknown targets like the Antarctic ice sheet and be confident that we have an extremely precise measurement of the ice surface elevation,” Studinger said. “It’s not about the precise location, but calibrating the radar for the signal that is transmitted from the antennas and then reflected back from the layers in the ice sheet and glaciers.”
IceBridge conducted two equipment checkout flights, one over the Pacific Ocean on Oct. 2 and one over the Mojave Desert on Oct. 3. The IceBridge Antarctic campaign is scheduled to begin with its first science flight on or about Oct. 11, 2012.

IceBridge Preparations Continue
 Posted on Sep 28, 2012 09:10:54 AM | George Hale
 0 Comments |  | Poor Fair Average Good Excellent
By George Hale, IceBridge Science Outreach Coordinator, NASA Goddard Space Flight Center
The work of installing IceBridge's science instruments on the NASA DC-8 airborne laboratory continued this week. People from the Center for the Remote Sensing of Ice Sheets at the University of Kansas (CReSIS) and from Sander Geophysics Limited (SGL) spent the week installing the aircraft's various radar instruments and the AirGrav gravimeter

With the last of the instruments installed and operational, IceBridge is now ready to start test flights next week. Monday afternoon's schedule includes pilot proficiency flights and on Tuesday and Wednesday IceBridge will carry out instrument check flights.

University of Kansas Fernando Rodriguez-Morales & Bryan Townley work the MCoRDS Radar instrument installation

University of Kansas Fernando Rodriguez-Morales and Bryan Townley install the MCoRDS Radar instrument 

SGL's Stefan Elieff and Sean O’Rourke complete the Gravimeter instrument installation

SGL's Stefan Elieff and Sean O’Rourke finish installing the gravimeter instrument 

University of Kansas Ben Panzer and NASA Tech Donny Bailes work the KU and Snow Radar instruments antennas installation in the DC-8 wing root area

University of Kansas' Ben Panzer and NASA Tech Donny Bailes work on the KU and Snow Radar instruments antennas in the DC-8 wing root area 

NASA Techs Kevin Mount and Terrance Dilworth accomplish instrument rack inspections on the DC-8

NASA Techs Kevin Mount and Terrance Dilworth inspect instrument racks on the DC-8

NASA DC-8 Techs weigh the aircraft with the OIB instrument installation on board

NASA DC-8 Techs weigh the aircraft with the OIB instruments on board 


Preparing the DC-8 for Antarctica 2012
 Posted on Sep 21, 2012 07:19:56 AM | George Hale
 0 Comments |  | Poor Fair Average Good Excellent
By George Hale, IceBridge Science Outreach Coordinator, NASA Goddard Space Flight Center
Over the next few weeks the IceBridge team will prepare NASA's DC-8 airborne laboratory for the 2012 Antarctic campaign. Long hours in the hangar at NASA's Dryden Flight Research Facility mean that the MCoRDS antenna and Airborne Topographic Mapper have been installed and all ground tests for ATM are complete. Next week, the radar and gravimeter teams will begin their preparation work.

IceBridge DC-8 preparing for outdoor ATM ground test

IceBridge DC-8 preparing for outdoor ATM ground test. Credit:  
NASA / Tom Tschida
 

 

MCoRDS antenna installed on the DC-8

MCoRDS antenna installed on the DC-8. Credit:  
NASA / Tom Tschida

Airborne Topographic Mapper instrument installed inside the DC-8

ATM instrument installed inside the DC-8. Credit:  
NASA / Tom Tschida

ATM team member Jim Yungel (front) and Matt Linkswiler make last minute adjustments to the instrument

ATM team member Jim Yungel (front) and Matt Linkswiler finish installing the ATM instrument assembly. Credit:  
NASA / Tom Tschida

ATM consoles installed in DC-8 cabin

ATM team members (left to right) Matt Linkswiler, Robert Harpold and Brad Grantham carry out ATM functional tests. Credit:  
NASA / Tom Tschida

ATM laser trace on hangar floor

ATM laser trace on hangar floor. Credit:  
NASA / Tom Tschida


The end of a successful ATM ground test. Pictured left to right:  
Kevin Mount, Robert Harpold, Jim Yungel, 
Lorenzo Sanchez, Joe Niquette and Matt Linkswiler. 
 
Credit:  
NASA / Tom Tschida


Q&A: Michael Studinger
 Posted on Jun 26, 2012 12:34:57 PM | George Hale
 0 Comments |  | Poor Fair Average Good Excellent
By Maria-Jose Viñas, Cryospheric Sciences Laboratory Outreach Coordinator, NASA Goddard Space Flight Center 
Michael Studinger is Operation IceBridge’s project scientist. He trained as a geophysicist in Germany, his home country, before moving to the U.S. to take a position at the Lamont-Doherty Earth Observatory and then transferring to NASA Goddard Space Flight Center in 2010. Studinger has been studying polar regions for 18 years, expanding his initial focus on the geology and tectonics of the Antarctic continent to the overall dynamic of polar ice sheets.
IceBridge project scientist Michael Studinger
Operation IceBridge Project Scientist Michael Studinger. Credit: Jefferson Beck / NASA
Studinger recently returned from Greenland, where he was leading Operation IceBridge’s 2012 Arctic campaign.
This was IceBridge’s fourth Arctic campaign. How different was it from previous years?
We flew more than last year: During the 75 days we were there, we only had to cancel a single flight because of weather, something I’ve never seen before. Regarding sea ice, we have expanded coverage in terms of area. For the first time we went to the Chukchi and Beaufort Seas to collect data there. But the biggest change this year is that we published a new data product that we had to deliver to the National Snow and Ice Data Center before we even returned from the field. This product is being used by modelers and other scientists to make a better prediction of the annual sea ice minimum in the summer. We can now feed ice thickness measurements from March and early April into these predictions and see how they improve them.
What are the benefits of improving Arctic sea ice minimum predictions?
There seems to be enough people who have an interest in finding out how thick or thin the sea ice will be. People who live in the Arctic and shipping companies...they want to know, they want to prepare. It’s like long-range weather forecast: People who grow crops would like to know if they’re going to get a wet season or a dry season.
Also, it’s a relatively short-term prediction, so we’ll soon find out if the models are working or not. It helps building better models because you can compare the results to the reality in a few months.
This Arctic campaign, you teamed up with CryoVEx, ESA’s calibration and validation campaign for the CryoSat-2 satellite. How did it go?
We did two coordinated flights with them. We were in Thule, Greenland, and they were in Alert, Canada. We both took off at the same time and made sure we were over the same point in the Arctic Ocean with CryoSat-2 flying overhead. It was quite a bit of a coordination effort. We measured the same spot along the satellite track within a few hours. The CryoVEx team has instruments similar to ours, but also some that we don’t have. IceBridge has unique instrument suite for sea ice that includes the world’s only airborne snow radar. By combining all the data from all the instruments, we can learn a lot about what each instrument is seeing and what CryoSat-2 is actually measuring over sea ice.
How’s your average Arctic campaign?
We start in Thule because we want to get the sea ice flights out of the way early on, as long as it’s cold over the Arctic Ocean. It’s still fairly dark there, that far north [Thule is 750 miles north of the Arctic Circle]. We have just enough light in the second half of March to fly the sea ice missions, during the first three weeks of the campaign. Then we go down to central Greenland while it’s still cold there and start doing ice sheet flights, for three or four weeks. Then we go back to Thule because it’s getting too warm in southern Greenland, and we finish the ice sheet flights in the northern half.
Can you describe your daily routine while in Greenland?
We get up at 5 a.m. In Kangerlussuaq, we try to be in the air at 8:30, and in Thule we try to be flying at 8, when the airport opens. Eight hours later, we land. After that, we have a science meeting where we talk about how the flight went and the plan for the following day. Then we eat dinner, check email, look at data... all that before we go to bed and do it all over again the next day.
How do Arctic and Antarctic campaigns differ?
We use different aircraft: a P-3B for the Arctic and a DC-8 for Antarctica. In Greenland, when we fly out of Kangerlussuaq or Thule, we start collecting data pretty much right away, except for the sea ice missions. In Antarctica, we “commute” from Punta Arenas in southern Chile, which takes a few hours. Then we can only collect data for a few hours before we go back home to Punta Arenas. Typically, in the DC-8 we fly for 11 to 11.5 hours, much longer than the about 8 hours of flight with the P-3.
We actually fly more instruments on the P-3: the accumulation radar and the magnetometer (which is much easier to install on the P-3 than on the DC-8). We don’t really have the room in the fuselage to mount the accumulation radar antennas and there’s not really much of a need to use it in Antarctica. The snow accumulation in Greenland is higher. We can actually see annual layers with the accumulation radar but it’d be far more difficult in Antarctica because less snow falls there.
Personally, do you prefer one campaign to the other?
No, they’re just different. It’s a different airplane: the DC-8 is much more comfortable, less noisy. You don’t have the vibration of the P-3, so you can actually get a lot of work done on the transit flights. But the flights are very long.
And scientifically, is one campaign more interesting than the other?
Not for me. Most of my work I’ve done in Antarctica, but I’m getting more and more interested in what Greenland has to tell us. If you look at the two biggest glaciers we study, Jakobshavn Isbrae in Greenland and Pine Island Glacier in Antarctica, the kind of mechanism through which both glaciers are losing ice is similar -- warm ocean water is melting the ice from underneath. So we’re studying similar processes. Antarctica is far more challenging to get there and collect data, but from a scientific point we need to do both, otherwise we’re missing part of the picture.
What’s the 2012 Antarctic campaign going to look like?
It’s going to be shorter for a number of reasons, mostly because the aircraft has already been committed for an international multi-aircraft experiment in Thailand, and it’s also committed afterward. We’ll try to fly as much as we can, we’ll be using two aircraft: a G-V from the National Science Foundation, flying at high altitude, and NASA’s DC-8 flying low.
What will the future bring for IceBridge?
The plan is we will start using unmanned aerial vehicles and we’ll probably be doing it mostly over sea ice in the Arctic Ocean, but we don’t know the details yet. We will be doing some test flights over the Arctic Ocean later this year with the Global Hawk, either with the radar or laser altimeter onboard. I don’t think we can replace manned aircraft completely over the course of IceBridge.
After ICESat-2 launches, will IceBridge continue to some extent?
There will always be airborne campaigns to some degree, because there are some datasets that we can only collect from planes, and we will also need to calibrate and validate the satellite data. We need a variety of different scales, wavelengths, different types of measurements in order to really answer the science questions that we have, such as what is the contribution of Greenland to sea level rise in the next 20 or 30 years. For example, if we only have ICESat-2 collecting measurements of how the surface elevation is changing, we’ll know a lot, but we’ll never be able to answer with certainty what is causing these changes. It’s almost like you’re taking the pulse of a patient; you’re only looking at the symptoms of the illness without understanding what’s causing it. In order to find out why the ice sheet is changing its surface, we need to understand what’s beneath the ice sheet because that’s what’s driving a lot of the dynamic changes. And those are datasets that you can’t collect from space, you need an airplane to go in there and get the greater picture of what’s below there and other things, like snow accumulation, which can be done much better from airplane. It’s not a single satellite that will provide us the answer, not a single airborne measurement – it all has to come together.
A Spanish version of this post is available on National Public Radio's Science Friday blog.


No comments:

Post a Comment